In vitro selection of self-cleaving DNAs.
نویسندگان
چکیده
BACKGROUND Ribozymes catalyze an important set of chemical transformations in metabolism, and 'engineered' ribozymes have been made that catalyze a variety of additional reactions. The possibility that catalytic DNAs or 'deoxyribozymes' can be made has only recently been addressed. Specifically, it is unclear whether the absence of the 2' hydroxyl renders DNA incapable of exhibiting efficient enzyme-like activity, making it impossible to discover natural or create artificial DNA biocatalysts. RESULTS We report the isolation by in vitro selection of two distinct classes of self-cleaving DNAs from a pool of random-sequence oligonucleotides. Individual catalysts from 'class I' require both Cu2+ and ascorbate to mediate oxidative self-cleavage. Individual catalysts from class II use Cu2+ as the sole cofactor. Further optimization of a class II individual by in vitro selection yielded new catalytic DNAs that facilitate Cu2+-dependent self-cleavage with rate enhancements exceeding 1 000 000-fold relative to the uncatalyzed rate of DNA cleavage. CONCLUSIONS Despite the absence of 2' hydroxyls, single-stranded DNA can adopt structures that promote divalent-metal-dependent self-cleavage via an oxidative mechanism. These results suggest that an efficient DNA enzyme might be made to cleave DNA in a biological context.
منابع مشابه
Structural diversity of self-cleaving ribozymes.
In vitro selection was used to isolate Mg(2+)-dependent self-cleaving ribozymes from random sequence. Characterization of representative clones revealed the emergence of at least 12 classes of ribozymes that adopt distinct secondary structure motifs. Only one class corresponds to a previously known structural motif, that of the naturally occurring hammerhead ribozyme. Each ribozyme promotes sel...
متن کاملIn vitro selection of hammerhead ribozymes containing a bulged nucleotide in stem II.
Hammerhead ribozymes were transcribed from a dsDNA template containing four random nucleotides between stems II and III, which replace the naturally occurring GAA nucleotides. In vitro selection was used to select hammerhead ribozymes capable of in cis cleavage using denaturing polyacrylamide gels for the isolation of cleaving sequences. Self-cleaving ribozymes were cloned after the first and s...
متن کاملUnbiased in vitro selection reveals the unique character of the self-cleaving antigenomic HDV RNA sequence
In order to revisit the architecture of the catalytic center of the antigenomic hepatitis delta virus (HDV) ribozyme we developed an unbiased in vitro selection procedure that efficiently selected novel variants from a relatively small set of sequences. Using this procedure we examined all possible variants from a pool of HDV ribozymes that had been randomized at 25 positions (4(25)). The isola...
متن کاملIn vitro selection of allosteric ribozymes: theory and experimental validation.
In vitro selection techniques offer powerful and versatile methods to isolate nucleic acid sequences with specific activities from huge libraries. We describe an in vitro selection strategy for the de novo selection of allosteric self-cleaving ribozymes responding to pefloxacin and other quinolone derivatives. Within 16 selection cycles, highly sensitive clones responding to drug levels in the ...
متن کاملA divalent metal-dependent self-cleaving DNAzyme with a tyrosine side chain.
The enzymatic incorporation of a phenol-modified 2'-deoxyuridine triphosphate gave rise to a modified DNA library that was subsequently used in an in vitro selection for ribophosphodiester-cleaving DNAzymes in the presence of divalent zinc and magnesium cations. After 11 rounds of selection, cloning and sequencing resulted in 14 distinct sequences, the most active of which was Dz11-17PheO. Dz11...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Chemistry & biology
دوره 3 12 شماره
صفحات -
تاریخ انتشار 1996